KerMor  0.9
Model order reduction for nonlinear dynamical systems and nonlinear approximation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages

Z. Bai and D. Skoogh. A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl., 415(2-3):406 – 425, 2006. Special Issue on Order Reduction of Large-Scale Systems.


S. Chaturantabut and D. Sorensen. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM J. Sci. Comput., 32(5):2737–2764, 2010.


M. Condon and R. Ivanov. Empirical balanced truncation of nonlinear systems. J. Nonlinear Sci., 14:405–414, 2004. 10.1007/s00332-004-0617-5.


Michael Günther, Syn Schmitt, and Veit Wank. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biological Cybernetics, 97:63–79, 2007.


Thomas Heidlauf and Oliver Röhrle. Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS. Computational and Mathematical Methods in Medicine, 2013.


D. Leviatan and V.N. Temlyakov. Simultaneous greedy approximation in Banach spaces. J. Complexity, 21(3):275 – 293, 2005.


M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comp. Appl. Math., 236(4):575 – 588, 2011. International Workshop on Multivariate Approximation and Interpolation with Applications (MAIA 2010).


M. Rewienski and J. White. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Computer-Aided Design, 22(2):155 – 170, feb. 2003.


R. Schaback. Limit problems for interpolation by analytic radial basis functions. J. Comp. Appl. Math., 212(2):127 – 149, 2008.


I. Steinwart, D. Hush, and C. Scovel. Training SVMs Without Offset. J. Mach. Learn. Res., 12:141–202, February 2011.


V. N. Temlyakov. Greedy approximation. Acta Numer., 17:235–409, 2008.


D. Wirtz and B. Haasdonk. Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Syst. Contr. Lett., 61(1):203 – 211, 2012.


D. Wirtz and B. Haasdonk. An improved vectorial kernel orthogonal greedy algorithm. Dolomites Research Notes on Approximation, 6:83–100, 2013.


D. Wirtz. Model Reduction for Nonlinear Systems: Kernel Methods and Error Estimation. PhD Thesis, University of Stuttgart, October 2013.